Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Clin Med ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38730995

RESUMEN

Carbon monoxide poisoning remains a leading cause of accidental poisoning worldwide (both at home and at work), and it is also a cause of suicidal poisoning. Such poisoning can arise following prolonged exposure to low levels of CO or following brief exposure to high concentrations of the gas. In fact, despite exposure limits, high safety standards, and the availability of CO alarms, nearly 50,000 people in the United States visit the emergency department each year due to poisoning. Additionally, CO poisoning in the United States causes up to 500 deaths each year. Despite the widespread nature of this form of poisoning, known about for centuries and whose damage mechanisms have been recognized (or rather hypothesized about) since the 1800s, early recognition, especially of late complications, and treatment remain a medical challenge. A well-designed therapeutic diagnostic process is necessary so that indication for hyperbaric or normobaric therapy is correctly made and so that patients are followed up even after acute exposure to diagnose late complications early. Furthermore, it is necessary to consider that in the setting of emergency medicine, CO poisoning can be part of a differential diagnosis along with other more frequent conditions, making its recognition difficult. The last thirty years have been marked by a significant increase in knowledge regarding the toxicity of CO, as well as its functioning and its importance at physiological concentrations in mammalian systems. This review, taking into account the significant progress made in recent years, aims to reconsider the pathogenicity of CO, which is not trivially just poisonous to tissues. A revision of the paradigm, especially as regards treatment and sequelae, appears necessary, and new studies should focus on this new point of view.

2.
J Pers Med ; 14(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38392628

RESUMEN

Elderly patients, when they present to the emergency department (ED) or are admitted to the hospital, are at higher risk of adverse outcomes such as higher mortality and longer hospital stays. This is mainly due to their age and their increased fragility. In order to minimize this already increased risk, adequate triage is of foremost importance for fragile geriatric (>75 years old) patients who present to the ED. The admissions of elderly patients from 1 January 2014 to 31 December 2020 were examined, taking into consideration the presence of two different triage systems, a 4-level (4LT) and a 5-level (5LT) triage system. This study analyzes the difference in wait times and under- (UT) and over-triage (OT) in geriatric and general populations with two different triage models. Another outcome of this study was the analysis of the impact of crowding and its variables on the triage system during the COVID-19 pandemic. A total of 423,257 ED presentations were included. An increase in admissions of geriatric, more fragile, and seriously ill individuals was observed, and a progressive increase in crowding was simultaneously detected. Geriatric patients, when presenting to the emergency department, are subject to the problems of UT and OT in both a 4LT system and a 5LT system. Several indicators and variables of crowding increased, with a net increase in throughput and output factors, notably the length of stay (LOS), exit block, boarding, and processing times. This in turn led to an increase in wait times and an increase in UT in the geriatric population. It has indeed been shown that an increase in crowding results in an increased risk of UT, and this is especially true for 4LT compared to 5LT systems. When observing the pandemic period, an increase in admissions of older and more serious patients was observed. However, in the pandemic period, a general reduction in waiting times was observed, as well as an increase in crowding indices and intrahospital mortality. This study demonstrates how introducing a 5LT system enables better flow and patient care in an ED. Avoiding UT of geriatric patients, however, remains a challenge in EDs.

3.
Hum Exp Toxicol ; 42: 9603271231218926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38073286

RESUMEN

Ozone, an allotrope of oxygen, is enjoying an increasing interest in the setting and management of the medical adjunct treatment, which is called, maybe too simplistically, "ozone therapy". Ozone is not a medicine, so the word therapy does not properly fit this gaseous molecule. Like many natural compounds, for example plant flavonoids, even ozone interacts with aryl hydrocarbon receptors (AhRs) and, at low doses, it works according to the paradoxical mechanism of hormesis, involving mitochondria (mitohormesis). Ozone, in the hormetic range, exerts cell protective functions via the Nrf2-mediated activation of the anti-oxidant system, then leading to anti-inflammatory effects, also via the triggering of low doses of 4-HNE. Moreover, its interaction with plasma and lipids forms reactive oxygen species (ROS) and lipoperoxides (LPOs), generally called ozonides, which are enabled to rule the major molecular actions of ozone in the cell. Ozone behaves as a bioregulator, by activating a wide population of reactive intermediates, which usually target mitochondria and their turnover/biogenesis, often leading to a pleiotropic spectrum of actions and behaving as a tuner of the fundamental mechanisms of survival in the cell. In this sense, ozone can be considered a novelty in the medical sciences and in the clinical approach to pharmacology and medical therapy, due to its ability to target complex regulatory systems and not simple receptors.


Asunto(s)
Hormesis , Ozono , Ozono/uso terapéutico , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Personalidad
4.
Biology (Basel) ; 12(12)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38132338

RESUMEN

BACKGROUND: Ozone is an allotrope of oxygen whose use in medicine has rapidly grown in recent years. Ozonated blood allows for the use of ozone in a safe modality, as plasma and blood cells are endowed with an antioxidant system able to quench ozone's pro-oxidant property and to elicit the Nrf2/Kwap1/ARE pathway. METHODS: We present two clinical studies, a case-series (six patients) observational study adopting ozone as a major autohemotherapy and topical ozone to address infected post-surgical wounds with multi-drug resistant bacteria and an observational study (250 patients) using ozonated blood for treating knee osteoarthritis. RESULTS: Ozonated blood via major autohemotherapy reduced the extent of infections in wounds, reduced the inflammatory biomarkers by more than 75% and improved patients' QoL, whereas ozonated blood via minor autohemotherapy improved significantly (p < 0.001) WOMAC and Lequesne's parameters in knee osteoarthritis. CONCLUSIONS: The models described, i.e., ozone autohemotherapy in wound antimicrobial treatment and ozonated blood in knee osteoarthrosis, following our protocols, share the outstanding ability of ozone to modulate the innate immune response and address bacterial clearance as well as inflammation and pain.

5.
J Pers Med ; 13(12)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138917

RESUMEN

Hypothermia is a widespread condition all over the world, with a high risk of mortality in pre-hospital and in-hospital settings when it is not promptly and adequately treated. In this review, we aim to describe the main specificities of the diagnosis and treatment of hypothermia through consideration of the physiological changes that occur in hypothermic patients. Hypothermia can occur due to unfavorable environmental conditions as well as internal causes, such as pathological states that result in reduced heat production, increased heat loss or ineffectiveness of the thermal regulation system. The consequences of hypothermia affect several systems in the body-the cardiovascular system, the central and peripheral nervous systems, the respiratory system, the endocrine system and the gastrointestinal system-but also kidney function, electrolyte balance and coagulation. Once hypothermia is recognized, prompt treatment, focused on restoring body temperature and supporting vital functions, is fundamental in order to avert preventable death. It is important to also denote the fact that CPR has specificities related to the unique profile of hypothermic patients.

6.
Antioxidants (Basel) ; 12(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38001838

RESUMEN

Ozone is an allotrope of oxygen, widely known to exert an anti-oxidant potential. The ability of low, controlled and standardized doses of ozone in the ozone adjunct treatment of bacterial infections, which occur in wounds, is engaging clinical research to deepen the role of ozone in eradicating even multidrug-resistant bacteria. Ozone activates the nuclear factor erythroid 2-related factor 2 (Nrf2), and this activation triggers a complex cascade of events, which ultimately leads to macrophage training and an improvement in their ability to operate a clearance of bacteria in the patient's anatomical districts. In this review, we try to elucidate the recent evidence about the mechanisms with which ozone can actually remove bacteria and even multi-drug-resistant (MDR) bacteria, accounting on its complex ability in modulating immunity.

7.
J Clin Med ; 12(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37510865

RESUMEN

The association between emergency department (ED) length of stay (EDLOS) with in-hospital mortality (IHM) in older patients remains unclear. This retrospective study aims to delineate the relationship between EDLOS and IHM in elderly patients. From the ED patients (n = 383,586) who visited an urban academic tertiary care medical center from January 2010 to December 2016, 78,478 older patients (age ≥60 years) were identified and stratified into three age subgroups: 60-74 (early elderly), 75-89 (late elderly), and ≥90 years (longevous elderly). We applied multiple machine learning approaches to identify the risk correlation trends between EDLOS and IHM, as well as boarding time (BT) and IHM. The incidence of IHM increased with age: 60-74 (2.7%), 75-89 (4.5%), and ≥90 years (6.3%). The best area under the receiver operating characteristic curve was obtained by Light Gradient Boosting Machine model for age groups 60-74, 75-89, and ≥90 years, which were 0.892 (95% CI, 0.870-0.916), 0.886 (95% CI, 0.861-0.911), and 0.838 (95% CI, 0.782-0.887), respectively. Our study showed that EDLOS and BT were statistically correlated with IHM (p < 0.001), and a significantly higher risk of IHM was found in low EDLOS and high BT. The flagged rate of quality assurance issues was higher in lower EDLOS ≤1 h (9.96%) vs. higher EDLOS 7 h

8.
Pharmacol Res ; 192: 106799, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37211239

RESUMEN

Depression is the most prevalent mental disorder in the world associated with huge socio-economic consequences. While depressive-related symptoms are well known, the molecular mechanisms underlying disease pathophysiology and progression remain largely unknown. The gut microbiota (GM) is emerging as a key regulator of the central nervous system homeostasis by exerting fundamental immune and metabolic functions. In turn, the brain influences the intestinal microbial composition through neuroendocrine signals, within the so-called gut microbiota-brain axis. The balance of this bidirectional crosstalk is important to ensure neurogenesis, preserve the integrity of the blood-brain barrier and avoid neuroinflammation. Conversely, dysbiosis and gut permeability negatively affect brain development, behavior, and cognition. Furthermore, although not fully defined yet, changes in the GM composition in depressed patients are reported to influence the pharmacokinetics of common antidepressants by affecting their absorption, metabolism, and activity. Similarly, neuropsychiatric drugs may shape in turn the GM with an impact on the efficacy and toxicity of the pharmacological intervention itself. Consequently, strategies aimed at re-establishing the correct homeostatic gut balance (i.e., prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions) represent an innovative approach to improve the pharmacotherapy of depression. Among these, probiotics and the Mediterranean diet, alone or in combination with the standard of care, hold promise for clinical application. Therefore, the disclosure of the intricate network between GM and depression will give precious insights for innovative diagnostic and therapeutic approaches towards depression, with profound implications for drug development and clinical practice.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Microbioma Gastrointestinal/fisiología , Depresión/terapia , Encéfalo , Probióticos/uso terapéutico
9.
Ageing Res Rev ; 88: 101958, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37211318

RESUMEN

Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.


Asunto(s)
Enfermedades Metabólicas , Enfermedades Neurodegenerativas , Humanos , Envejecimiento/metabolismo , Senescencia Celular/genética , Enfermedades Neurodegenerativas/metabolismo , Proteínas de Unión al ARN/genética
10.
Medicina (Kaunas) ; 59(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37109739

RESUMEN

Background and Objectives: Triage systems help provide the right care at the right time for patients presenting to emergency departments (EDs). Triage systems are generally used to subdivide patients into three to five categories according to the system used, and their performance must be carefully monitored to ensure the best care for patients. Materials and Methods: We examined ED accesses in the context of 4-level (4LT) and 5-level triage systems (5LT), implemented from 1 January 2014 to 31 December 2020. This study assessed the effects of a 5LT on wait times and under-triage (UT) and over-triage (OT). We also examined how 5LT and 4LT systems reflected actual patient acuity by correlating triage codes with severity codes at discharge. Other outcomes included the impact of crowding indices and 5LT system function during the COVID-19 pandemic in the study populations. Results: We evaluated 423,257 ED presentations. Visits to the ED by more fragile and seriously ill individuals increased, with a progressive increase in crowding. The length of stay (LOS), exit block, boarding, and processing times increased, reflecting a net raise in throughput and output factors, with a consequent lengthening of wait times. The decreased UT trend was observed after implementing the 5LT system. Conversely, a slight rise in OT was reported, although this did not affect the medium-high-intensity care area. Conclusions: Introducing a 5LT improved ED performance and patient care.


Asunto(s)
COVID-19 , Listas de Espera , Humanos , Triaje , Pandemias , Tiempo de Internación , Servicio de Urgencia en Hospital
11.
Antioxidants (Basel) ; 12(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36671042

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.

13.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293176

RESUMEN

The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of neurodegenerative diseases. In Parkinson's disease (PD), gastrointestinal symptoms often precede the onset of motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis. Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully elucidated. After a brief introduction on the involvement of GMBA in the disease, we present evidence for GM alterations and leaky gut in PD patients. According to these data, we then review the potential of GM-based signatures to serve as disease biomarkers and we highlight the emerging role of probiotics, prebiotics, antibiotics, dietary interventions, and fecal microbiota transplantation as supportive therapeutic approaches in PD. Finally, we analyze the mutual influence between commonly prescribed PD medications and gut-microbiota, and we offer insights on the involvement also of nasal and oral microbiota in PD pathology, thus providing a comprehensive and up-to-date overview on the role of microbial features in disease diagnosis and treatment.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Microbioma Gastrointestinal/fisiología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/patología , Disbiosis/terapia , Antibacterianos , Biomarcadores
15.
Biomedicines ; 10(9)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36140358

RESUMEN

An increasing body of evidence in the literature is reporting the feasibility of using medical ozone as a possible alternative and adjuvant treatment for COVID-19 patients, significantly reducing hospitalization time, pro-inflammatory indicators, and coagulation markers and improving blood oxygenation parameters. In addition to the well-described ability of medical ozone in counteracting oxidative stress through the upregulation of the main anti-oxidant and scavenging enzymes, oxygen-ozone (O2-O3) therapy has also proved effective in reducing chronic inflammation and the occurrence of immune thrombosis, two key players involved in COVID-19 exacerbation and severity. As chronic inflammation and oxidative stress are also reported to be among the main drivers of the long sequelae of SARS-CoV2 infection, a rising number of studies is investigating the potential of O2-O3 therapy to reduce and/or prevent the wide range of post-COVID (or PASC)-related disorders. This narrative review aims to describe the molecular mechanisms through which medical ozone acts, to summarize the clinical evidence on the use of O2-O3 therapy as an alternative and adjuvant COVID-19 treatment, and to discuss the emerging potential of this approach in the context of PASC symptoms, thus offering new insights into effective and safe nonantiviral therapies for the fighting of this devastating pandemic.

16.
J Clin Med ; 11(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35956178

RESUMEN

Chronic fatigue syndrome, or myalgic encephalomyelitis (CFS/ME), is a debilitating disease with unknown causes that is more common in women and tends to develop between patients' mid-20s and mid-40s [...].

17.
Antioxidants (Basel) ; 11(7)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35883714

RESUMEN

Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.

18.
J Clin Med ; 11(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35887706

RESUMEN

High altitude can be a hostile environment and a paradigm of how environmental factors can determine illness when human biological adaptability is exceeded. This paper aims to provide a comprehensive review of high-altitude sickness, including its epidemiology, pathophysiology, and treatments. The first section of our work defines high altitude and considers the mechanisms of adaptation to it and the associated risk factors for low adaptability. The second section discusses the main high-altitude diseases, highlighting how environmental factors can lead to the loss of homeostasis, compromising important vital functions. Early recognition of clinical symptoms is important for the establishment of the correct therapy. The third section focuses on high-altitude pulmonary edema, which is one of the main high-altitude diseases. With a deeper understanding of the pathogenesis of high-altitude diseases, as well as a reasoned approach to environmental or physical factors, we examine the main high-altitude diseases. Such an approach is critical for the effective treatment of patients in a hostile environment, or treatment in the emergency room after exposure to extreme physical or environmental factors.

19.
Cells ; 11(8)2022 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-35456047

RESUMEN

Alzheimer's Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-ß (Aß) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aß1-42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Humanos , Placa Amiloide , Proteínas tau/metabolismo
20.
Nutrients ; 14(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35277027

RESUMEN

Gut microbiota is emerging as a key regulator of many disease conditions and its dysregulation is implicated in the pathogenesis of several gastrointestinal and extraintestinal disorders. More recently, gut microbiome alterations have been linked to neurodegeneration through the increasingly defined gut microbiota brain axis, opening the possibility for new microbiota-based therapeutic options. Although several studies have been conducted to unravel the possible relationship between Alzheimer's Disease (AD) pathogenesis and progression, the diagnostic and therapeutic potential of approaches aiming at restoring gut microbiota eubiosis remain to be fully addressed. In this narrative review, we briefly summarize the role of gut microbiota homeostasis in brain health and disease, and we present evidence for its dysregulation in AD patients. Based on these observations, we then discuss how dysbiosis might be exploited as a new diagnostic tool in early and advanced disease stages, and we examine the potential of prebiotics, probiotics, fecal microbiota transplantation, and diets as complementary therapeutic interventions on disease pathogenesis and progression, thus offering new insights into the diagnosis and treatment of this devastating and progressive disease.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/terapia , Disbiosis/terapia , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Humanos , Prebióticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...